

Contact

Background GPU Kernel Scientist Process

Key Take-aways :

In-context code examples work

Overall process >> single LLM

Diversity preservation important

An LLM-Driven Framework for

GPU Kernel Scientist

Key References

"Illuminating Search Spaces by Mapping Elites" - Mouret & Clune (2015)

"AlphaEvolve: A coding agent for scientific and algorithmic discovery."

 - Google DeepMind (2025)

"The AI CUDA Engineer: Agentic CUDA Kernel Discovery, Optimization and

 Composition" - Lange et al. (2025)

Key Decisions Discussion

Future directions :

Approach not limited to AMD ...

 Many new Hardware devices

 ... often Software constrained

Use good code cross-domain

Selection of in-context materials

Wordplay Dataset (New)

ES-FoMo Workshop

Efficient Systems for

Foundation Models

Iterative Kernel Optimization

Failures

Kernel Writer

Documentation:
* Original Problem Statement
* PyTorch model code
* MVP HIP code (inefficient)

Additional Data:
* 'findings' - about HIP
* Pseudocode for efficient kernel

Benchmarks and Ancestry Evolutionary Selector Experiment Designer

Benchmarking Platform

Most

Innovative

Highest

Potential

Most

Certain

3 experiments to run:

Code, with 1-step history:
* Reference Code
* Base Code
* Performance uplift in last step

Instructions
* Use the 'Experiment' provided
* Create 'diff' of base code

Outputs HIP code

For all the kernels:
* Show the kernel ID
* With their parent's ID
* And an array of benchmarks

Documentation:
* Mission statement
* Listing of IDs and Benchmarks

Return the following:
* Suitable Base code ID
* Relevant Ref code ID
* Explanation of approach

Documentation:
* Mission statement
* ? Related Blog Post
* Base HIP code

Create the following:
* 10 'avenues' of research
* 5 experiment designs
* Rate each design

Compilation:
* Does the code compile?
* If not, return to Kernel Writer

Testing:
* Correct results from code?
* If not, return to Kernel Writer

Benchmarking:
* Accurate timing (18 seeds)
* No profiling data available

2
 c

o
d

e
 s

a
m

p
le

s

:
B

a
s
e
 &

 R
e
f

P
o
p

u
la

ti
o
n

D

e
ta

il
s

Gemini

Flash

Gemini

Flash

Gemini

Pro

Add results

to population

Results

Martin Andrews Sam Witteveen

GPU Kernels :

Challenging to write

 Specialised skill-set

 Public information Nvidia-focused

AMD Developer Challenge :

'GPUmode' Kaggle-like competition

 Single GPU target : AMD MI300

 3 DeepSeek-inspired kernels

The Focus : `amd-fp8-mm`

Block-Scaled fp8 matrix multiply

 18 specific input sizes

 PyTorch version (accuracy check)

No restrictions to approach

Only REST access to server

 Returned data very limited

No access to profiler tooling

Code limited to ~30KB

Competition Limitiations

LLM-Driven Approach

Used Gemini 2.5 Flash & Pro models

Human input (necessarily) limited

LLM-only Evolution/Science Process

Base (and reference) kernel choice

Design of experiments to perform

Writing next generation of kernels

Key Strategies

Prompt for reasoning about selection

Prompt for multiple experiments

"Innovation" scoring for diversity

Main Hypotheses Validated :

LLMs are capable of writing kernels

 ... even without much public data

Gemini Pro for exploration/debugging

Human specialists still have edge

 But now have good examples

Support for this research was

provided by the Google AI

Developer Programs team,

including access to the Gemini

models and GPUs on Google

Cloud Platform.

Competition Timings :

Naïve HIP: ~5000μs

PyTorch base-case: ~860μs

 (uses optimised fp16)

Winning human entry: ~105μs

 (top-8 had actual access to MI300)

This work's LLM-only entry: 450μs

