GPU Kernel Scientist An LLM-Driven Framework for Iterative Kernel Optimization

Martin Andrews

Sam Witteveen

ES-FoMo Workshop Efficient Systems for Foundation Models

Background

GPU Kernel Scientist Process

GPU Kernels :

- ▲ Challenging to write
 - Specialised skill-set
 - Public information Nvidia-focused

AMD Developer Challenge :

GPUmode' Kaggle-like competition

- - Single GPU target : AMD MI300
 - 3 DeepSeek-inspired kernels

The Focus : `amd-fp8-mm`

- Block-Scaled fp8 matrix multiply
 - 18 specific input sizes
 - PyTorch version (accuracy check)
- No restrictions to approach

Competition Limitiations

- ▲ Only REST access to server
 - Returned data very limited
- ▲ No access to profiler tooling
- Code limited to ~30KB

Key Decisions

LLM-Driven Approach

- ▲ Used Gemini 2.5 Flash & Pro models
- ▲ Human input (necessarily) limited

LLM-only Evolution/Science Process

- ▲ Base (and reference) kernel choice
- ▲ Design of experiments to perform
- Writing next generation of kernels

Results

Competition Timings :

- ▲ Naïve HIP: ~5000μs
- ▲ PyTorch base-case: ~860µs
 - (uses optimised fp16)
- \checkmark Winning human entry: ~105µs
 - (top-8 had actual access to MI300)
- \blacktriangle This work's LLM-only entry: 450µs

Discussion

Key Take-aways :

- ▲ In-context code examples work
- ▲ Overall process >> single LLM
- ▲ Diversity preservation important

Future directions :

▲ Approach not limited to AMD ...

Key Strategies

- Prompt for reasoning about selection
- Prompt for multiple experiments
- Innovation" scoring for diversity

Main Hypotheses Validated :

- ▲ LLMs are capable of writing kernels
 - ... even without much public data
- Gemini Pro for exploration/debugging
- ▲ Human specialists still have edge
 - But now have good examples
- Many new Hardware devices
- In often Software constrained
- ▲ Use good code cross-domain
- ▲ Selection of in-context materials

Key References

- "Illuminating Search Spaces by Mapping Elites" Mouret & Clune (2015)
- A "AlphaEvolve: A coding agent for scientific and algorithmic discovery."
 - Google DeepMind (2025)
- "The AI CUDA Engineer: Agentic CUDA Kernel Discovery, Optimization and Composition" - Lange et al. (2025)

Contact

Support for this research was provided by the Google AI Developer Programs team, including access to the Gemini models and GPUs on Google Cloud Platform.